Source code for hanlp_common.document

# -*- coding:utf-8 -*-
# Author: hankcs
# Date: 2019-12-31 04:16
import json
import re
import warnings
from typing import List, Union

from phrasetree.tree import Tree

from hanlp_common.conll import CoNLLUWord, CoNLLSentence, CoNLLSentenceList
from hanlp_common.constant import PRED, IPYTHON
from hanlp_common.util import collapse_json, prefix_match
from hanlp_common.visualization import tree_to_list, list_to_tree, render_labeled_span, make_table


[docs]class Document(dict): def __init__(self, *args, **kwargs) -> None: r"""A dict structure holding parsed annotations. A document is a subclass of ``dict`` and it supports every interface of ``dict``\. Additionally, it supports interfaces to deal with various linguistic structures. Its ``str`` and ``dict`` representations are made to be compatible with JSON serialization. Args: *args: An iterator of key-value pairs. **kwargs: Arguments from ``**`` operator. Examples:: # Create a document doc = Document( tok=[["晓美焰", "来到", "北京", "立方庭", "参观", "自然", "语义", "科技", "公司"]], pos=[["NR", "VV", "NR", "NR", "VV", "NN", "NN", "NN", "NN"]], ner=[[["晓美焰", "PERSON", 0, 1], ["北京立方庭", "LOCATION", 2, 4], ["自然语义科技公司", "ORGANIZATION", 5, 9]]], dep=[[[2, "nsubj"], [0, "root"], [4, "name"], [2, "dobj"], [2, "conj"], [9, "compound"], [9, "compound"], [9, "compound"], [5, "dobj"]]] ) # print(doc) or str(doc) to get its JSON representation print(doc) # Access an annotation by its task name print(doc['tok']) # Get number of sentences print(f'It has {doc.count_sentences()} sentence(s)') # Access the n-th sentence print(doc.squeeze(0)['tok']) # Pretty print it right in your console or notebook doc.pretty_print() # To save the pretty prints in a str pretty_text: str = '\n\n'.join(doc.to_pretty()) """ super().__init__(*args, **kwargs) for k, v in list(self.items()): if not v: continue if k == 'con': if isinstance(v, Tree) or isinstance(v[0], Tree): continue flat = isinstance(v[0], str) if flat: v = [v] ls = [] for each in v: if not isinstance(each, Tree): ls.append(list_to_tree(each)) if flat: ls = ls[0] self[k] = ls elif k == 'amr': from hanlp_common.amr import AMRGraph import penman if isinstance(v, AMRGraph) or isinstance(v[0], AMRGraph): continue flat = isinstance(v[0][0], str) if flat: v = [v] graphs = [AMRGraph(penman.Graph(triples)) for triples in v] if flat: graphs = graphs[0] self[k] = graphs
[docs] def to_json(self, ensure_ascii=False, indent=2) -> str: """Convert to json string. Args: ensure_ascii: ``False`` to allow for non-ascii text. indent: Indent per nested structure. Returns: A text representation in ``str``. """ d = self.to_dict() text = json.dumps(d, ensure_ascii=ensure_ascii, indent=indent, default=lambda o: repr(o)) text = collapse_json(text, 4) return text
[docs] def to_dict(self): """Convert to a json compatible dict. Returns: A dict representation. """ d = dict(self) for k, v in self.items(): if v == [] or v is None: continue if k == 'con': if not isinstance(v, Tree) and not isinstance(v[0], Tree): continue flat = isinstance(v, Tree) if flat: v = [v] ls = [] for each in v: if isinstance(each, Tree): ls.append(tree_to_list(each)) if flat: ls = ls[0] d[k] = ls return d
def __str__(self) -> str: return self.to_json()
[docs] def to_conll(self, tok='tok', lem='lem', pos='pos', dep='dep', sdp='sdp') -> Union[ CoNLLSentence, List[CoNLLSentence]]: """ Convert to :class:`~hanlp_common.conll.CoNLLSentence`. Args: tok (str): Field name for tok. lem (str): Field name for lem. pos (str): Filed name for upos. dep (str): Field name for dependency parsing. sdp (str): Field name for semantic dependency parsing. Returns: A :class:`~hanlp_common.conll.CoNLLSentence` representation. """ tok = prefix_match(tok, self) lem = prefix_match(lem, self) pos = prefix_match(pos, self) dep = prefix_match(dep, self) sdp = prefix_match(sdp, self) results = CoNLLSentenceList() if not tok or not self[tok]: return results self = self._to_doc_without_spans(tok) flat = isinstance(self[tok][0], str) if flat: d = Document((k, [v]) for k, v in self.items()) else: d = self for sample in [dict(zip(d, t)) for t in zip(*d.values())]: def get(_k, _i): _v = sample.get(_k, None) if not _v: return None return _v[_i] sent = CoNLLSentence() for i, _tok in enumerate(sample[tok]): _dep = get(dep, i) if not _dep: _dep = (None, None) sent.append( CoNLLUWord(i + 1, form=_tok, lemma=get(lem, i), upos=get(pos, i), head=_dep[0], deprel=_dep[1], deps=None if not get(sdp, i) else '|'.join(f'{x[0]}:{x[1]}' for x in get(sdp, i)))) results.append(sent) if flat: return results[0] return results
[docs] def to_pretty(self, tok='tok', lem='lem', pos='pos', dep='dep', sdp='sdp', ner='ner', srl='srl', con='con', show_header=True, html=False) -> Union[str, List[str]]: """ Convert to a pretty text representation which can be printed to visualize linguistic structures. Args: tok: Token key. lem: Lemma key. pos: Part-of-speech key. dep: Dependency parse tree key. sdp: Semantic dependency tree/graph key. SDP visualization has not been implemented yet. ner: Named entity key. srl: Semantic role labeling key. con: Constituency parsing key. show_header: ``True`` to include a header which indicates each field with its name. html: ``True`` to output HTML format so that non-ASCII characters can align correctly. Returns: A pretty string. """ results = [] tok = prefix_match(tok, self) pos = prefix_match(pos, self) ner = prefix_match(ner, self) conlls = self.to_conll(tok, lem, pos, dep, sdp) flat = isinstance(conlls, CoNLLSentence) if flat: conlls: List[CoNLLSentence] = [conlls] def condense(block_, extras_=None): text_ = make_table(block_, insert_header=False) text_ = [x.split('\t', 1) for x in text_.split('\n')] text_ = [[x[0], x[1].replace('\t', '')] for x in text_] if extras_: for r, s in zip(extras_, text_): r.extend(s) return text_ for i, conll in enumerate(conlls): conll: CoNLLSentence = conll tokens = [x.form for x in conll] length = len(conll) extras = [[] for j in range(length + 1)] if ner in self: ner_samples = self[ner] if flat: ner_samples = [ner_samples] ner_per_sample = ner_samples[i] # For nested NER, use the longest span start_offsets = [None for i in range(length)] for ent, label, b, e in ner_per_sample: if not start_offsets[b] or e > start_offsets[b][-1]: start_offsets[b] = (ent, label, b, e) ner_per_sample = [y for y in start_offsets if y] header = ['Token', 'NER', 'Type'] block = [[] for _ in range(length + 1)] _ner = [] _type = [] offset = 0 for ent, label, b, e in ner_per_sample: render_labeled_span(b, e, _ner, _type, label, offset) offset = e if offset != length: _ner.extend([''] * (length - offset)) _type.extend([''] * (length - offset)) if any(_type): block[0].extend(header) for j, (_s, _t) in enumerate(zip(_ner, _type)): block[j + 1].extend((tokens[j], _s, _t)) text = condense(block, extras) if srl in self: srl_samples = self[srl] if flat: srl_samples = [srl_samples] srl_per_sample = srl_samples[i] for k, pas in enumerate(srl_per_sample): if not pas: continue block = [[] for _ in range(length + 1)] header = ['Token', 'SRL', f'PA{k + 1}'] _srl = [] _type = [] offset = 0 p_index = None for _, label, b, e in pas: render_labeled_span(b, e, _srl, _type, label, offset) offset = e if label == PRED: p_index = b if len(_srl) != length: _srl.extend([''] * (length - offset)) _type.extend([''] * (length - offset)) if p_index is not None: _srl[p_index] = '╟──►' # _type[j] = 'V' if len(block) != len(_srl) + 1: # warnings.warn(f'Unable to visualize overlapped spans: {pas}') continue block[0].extend(header) while len(_srl) < length: _srl.append('') while len(_type) < length: _type.append('') for j, (_s, _t) in enumerate(zip(_srl, _type)): block[j + 1].extend((tokens[j], _s, _t)) text = condense(block, extras) if con in self: con_samples: Tree = self[con] if flat: con_samples: List[Tree] = [con_samples] tree = con_samples[i] block = [[] for _ in range(length + 1)] block[0].extend(('Token', 'PoS')) for j, t in enumerate(tree.pos()): block[j + 1].extend(t) for height in range(2, tree.height() + (0 if len(tree) == 1 else 1)): offset = 0 spans = [] labels = [] for k, subtree in enumerate(tree.subtrees(lambda x: x.height() == height)): subtree: Tree = subtree b, e = offset, offset + len(subtree.leaves()) if height >= 3: b, e = subtree[0].center, subtree[-1].center + 1 subtree.center = b + (e - b) // 2 render_labeled_span(b, e, spans, labels, subtree.label(), offset, unidirectional=True) offset = e if len(spans) != length: spans.extend([''] * (length - len(spans))) if len(labels) != length: labels.extend([''] * (length - len(labels))) if height < 3: continue block[0].extend(['', f'{height}']) for j, (_s, _t) in enumerate(zip(spans, labels)): block[j + 1].extend((_s, _t)) # check short arrows and increase their length for j, arrow in enumerate(spans): if not arrow: # -1 current tag ; -2 arrow to current tag ; -3 = prev tag ; -4 = arrow to prev tag if block[j + 1][-3] or block[j + 1][-4] == '───►': if height > 3: if block[j + 1][-3]: block[j + 1][-1] = block[j + 1][-3] block[j + 1][-2] = '───►' else: block[j + 1][-1] = '────' block[j + 1][-2] = '────' block[j + 1][-3] = '────' if block[j + 1][-4] == '───►': block[j + 1][-4] = '────' else: block[j + 1][-1] = '────' if block[j + 1][-1] == '────': block[j + 1][-2] = '────' if not block[j + 1][-4]: block[j + 1][-4] = '────' # If the root label is shorter than the level number, extend it to the same length level_len = len(block[0][-1]) for row in block[1:]: if row[-1] and len(row[-1]) < level_len: row[-1] = row[-1] + ' ' * (level_len - len(row[-1])) text = condense(block) # Cosmetic issues for row in text[1:]: while ' ─' in row[1]: row[1] = row[1].replace(' ─', ' ──') row[1] = row[1].replace('─ ─', '───') row[1] = re.sub(r'([►─])([\w-]*)(\s+)([│├])', lambda m: f'{m.group(1)}{m.group(2)}{"─" * len(m.group(3))}{"┤" if m.group(4) == "│" else "┼"}', row[1]) row[1] = re.sub(r'►(─+)►', r'─\1►', row[1]) for r, s in zip(extras, text): r.extend(s) # warnings.warn('Unable to visualize non-projective trees.') if dep in self and conll.projective: text = conll.to_tree(extras) if not show_header: text = text.split('\n') text = '\n'.join(text[2:]) results.append(text) elif any(extras): results.append(make_table(extras, insert_header=True)) else: results.append(' '.join(['/'.join(str(f) for f in x.nonempty_fields) for x in conll])) if html: def to_html(pretty_text: str) -> str: lines = [x for x in pretty_text.split('\n') if x] cells = [] for line in lines: cells.append(line.split('\t')) num_cols = len(cells[0]) cols = [] for i in range(num_cols): cols.append([]) for row in cells: cols[-1].append(row[i]) html = '<div style="display: table; padding-bottom: 1rem;">' for i, each in enumerate(cols): html += '<pre style="display: table-cell; font-family: SFMono-Regular,Menlo,Monaco,Consolas,' \ 'Liberation Mono,Courier New,monospace; white-space: nowrap; line-height: 128%; padding: 0;">' if i != len(cols) - 1: each = [x + ' ' for x in each] html += '<br>'.join([x.replace(' ', '&nbsp;') for x in each]) html += '</pre>' html += '</div>' return html results = [to_html(x) for x in results] if flat: return results[0] return results
[docs] def pretty_print(self, tok='tok', lem='lem', pos='pos', dep='dep', sdp='sdp', ner='ner', srl='srl', con='con', show_header=True, html=IPYTHON): """ Print a pretty text representation which visualizes linguistic structures. Args: tok: Token key. lem: Lemma key. pos: Part-of-speech key. dep: Dependency parse tree key. sdp: Semantic dependency tree/graph key. SDP visualization has not been implemented yet. ner: Named entity key. srl: Semantic role labeling key. con: Constituency parsing key. show_header: ``True`` to print a header which indicates each field with its name. html: ``True`` to output HTML format so that non-ASCII characters can align correctly. """ results = self.to_pretty(tok, lem, pos, dep, sdp, ner, srl, con, show_header, html=html) if isinstance(results, str): results = [results] if html and IPYTHON: from IPython.core.display import display, HTML display(HTML('<br>'.join(results))) else: sent_new_line = '\n\n' if any('\n' in x for x in results) else '\n' print(sent_new_line.join(results))
[docs] def translate(self, lang, tok='tok', pos='pos', dep='dep', sdp='sdp', ner='ner', srl='srl'): """ Translate tags for each annotation. This is an inplace operation. .. Attention:: Note that the translated document might not print well in terminal due to non-ASCII characters. Args: lang: Target language to be translated to. tok: Token key. pos: Part-of-speech key. dep: Dependency parse tree key. sdp: Semantic dependency tree/graph key. SDP visualization has not been implemented yet. ner: Named entity key. srl: Semantic role labeling key. Returns: The translated document. """ if lang == 'zh': from hanlp.utils.lang.zh import localization else: raise NotImplementedError(f'No translation for {lang}. ' f'Please contribute to our translation at https://github.com/hankcs/HanLP') flat = isinstance(self[tok][0], str) for task, name in zip(['pos', 'ner', 'dep', 'sdp', 'srl'], [pos, ner, dep, sdp, srl]): annotations = self.get(name, None) if not annotations: continue if flat: annotations = [annotations] translate: dict = getattr(localization, name, None) if not translate: continue for anno_per_sent in annotations: for i, v in enumerate(anno_per_sent): if task == 'ner' or task == 'dep': v[1] = translate.get(v[1], v[1]) else: anno_per_sent[i] = translate.get(v, v) return self
[docs] def squeeze(self, i=0): r""" Squeeze the dimension of each field into one. It's intended to convert a nested document like ``[[sent_i]]`` to ``[sent_i]``. When there are multiple sentences, only the ``i-th`` one will be returned. Note this is not an inplace operation. Args: i: Keep the element at ``index`` for all ``list``\s. Returns: A squeezed document with only one sentence. """ sq = Document() for k, v in self.items(): sq[k] = v[i] if isinstance(v, list) else v return sq
def _to_doc_without_spans(self, tok: str): """ Remove the spans attached to tokens and return a new document. Args: tok: The key to tokens. Returns: A new document or itself. """ tokens: Union[List[str], List[List[str]], List[str, int, int], List[List[str, int, int]]] = self[tok] if isinstance(tokens[0], str): return self elif isinstance(tokens[0][-1], int): tokens = [x[0] for x in tokens] elif isinstance(tokens[0][-1], str): return self else: tokens = [[t[0] for t in x] for x in tokens] d = Document(**self) d[tok] = tokens return d
[docs] def get_by_prefix(self, prefix: str): """ Get value by the prefix of a key. Args: prefix: The prefix of a key. If multiple keys are matched, only the first one will be used. Returns: The value assigned with the matched key. """ key = prefix_match(prefix, self) if not key: return None return self[key]
[docs] def count_sentences(self) -> int: """ Count number of sentences in this document. Returns: Number of sentences. """ tok = self.get_by_prefix('tok') if isinstance(tok[0], str): return 1 return len(tok)