char_rnn
char_rnn¶
- class hanlp.layers.embeddings.char_rnn.CharRNN(field, vocab_size, embed: Union[int, torch.nn.modules.sparse.Embedding], hidden_size)[source]¶
Character level RNN embedding module.
- Parameters
field – The field in samples this encoder will work on.
vocab_size – The size of character vocab.
embed – An
Embeddingobject or the feature size to create anEmbeddingobject.hidden_size – The hidden size of RNNs.
- forward(batch, mask, **kwargs)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class hanlp.layers.embeddings.char_rnn.CharRNNEmbedding(field, embed, hidden_size, max_word_length=None)[source]¶
Character level RNN embedding module builder.
- Parameters
field – The field in samples this encoder will work on.
embed – An
Embeddingobject or the feature size to create anEmbeddingobject.hidden_size – The hidden size of RNNs.
max_word_length – Character sequence longer than
max_word_lengthwill be truncated.
- module(vocabs: hanlp.common.transform.VocabDict, **kwargs) Optional[torch.nn.modules.module.Module][source]¶
Build a module for this embedding.
- Parameters
**kwargs – Containing vocabs, training etc. Not finalized for now.
- Returns
A module.
- transform(vocabs: hanlp.common.transform.VocabDict, **kwargs) Optional[Callable][source]¶
Build a transform function for this embedding.
- Parameters
**kwargs – Containing vocabs, training etc. Not finalized for now.
- Returns
A transform function.