transformer_tagger
transformer_tagger¶
Transformer based tagger.
- class hanlp.components.taggers.transformers.transformer_tagger.TransformerTagger(**kwargs)[source]¶
A simple tagger using a linear layer with an optional CRF (Lafferty et al. 2001) layer for any tagging tasks including PoS tagging and many others.
- Parameters
**kwargs – Not used.
- build_dataloader(data, batch_size, shuffle, device, logger: Optional[logging.Logger] = None, sampler_builder: Optional[hanlp.common.dataset.SamplerBuilder] = None, gradient_accumulation=1, extra_embeddings: Optional[hanlp.layers.embeddings.embedding.Embedding] = None, transform=None, max_seq_len=None, **kwargs) torch.utils.data.dataloader.DataLoader [source]¶
Build dataloader for training, dev and test sets. It’s suggested to build vocabs in this method if they are not built yet.
- Parameters
data – Data representing samples, which can be a path or a list of samples.
batch_size – Number of samples per batch.
shuffle – Whether to shuffle this dataloader.
device – Device tensors should be loaded onto.
logger – Logger for reporting some message if dataloader takes a long time or if vocabs has to be built.
**kwargs – Arguments from
**self.config
.
- build_model(training=True, extra_embeddings: Optional[hanlp.layers.embeddings.embedding.Embedding] = None, finetune=False, logger=None, **kwargs) torch.nn.modules.module.Module [source]¶
Build model.
- Parameters
training –
True
if called during training.**kwargs –
**self.config
.
- build_vocabs(trn, logger, **kwargs)[source]¶
Override this method to build vocabs.
- Parameters
trn – Training set.
logger – Logger for reporting progress.
- fit(trn_data, dev_data, save_dir, transformer, average_subwords=False, word_dropout: float = 0.2, hidden_dropout=None, layer_dropout=0, scalar_mix=None, mix_embedding: int = 0, grad_norm=5.0, transformer_grad_norm=None, lr=5e-05, transformer_lr=None, transformer_layers=None, gradient_accumulation=1, adam_epsilon=1e-06, weight_decay=0, warmup_steps=0.1, secondary_encoder=None, extra_embeddings: Optional[hanlp.layers.embeddings.embedding.Embedding] = None, crf=False, reduction='sum', batch_size=32, sampler_builder: Optional[hanlp.common.dataset.SamplerBuilder] = None, epochs=3, patience=5, token_key=None, max_seq_len=None, sent_delimiter=None, char_level=False, hard_constraint=False, transform=None, logger=None, devices: Optional[Union[float, int, List[int]]] = None, **kwargs)[source]¶
Fit to data, triggers the training procedure. For training set and dev set, they shall be local or remote files.
- Parameters
trn_data – Training set.
dev_data – Development set.
save_dir – The directory to save trained component.
batch_size – The number of samples in a batch.
epochs – Number of epochs.
devices – Devices this component will live on.
logger – Any
logging.Logger
instance.seed – Random seed to reproduce this training.
finetune –
True
to load fromsave_dir
instead of creating a randomly initialized component.str
to specify a differentsave_dir
to load from.eval_trn – Evaluate training set after each update. This can slow down the training but provides a quick diagnostic for debugging.
_device_placeholder –
True
to create a placeholder tensor which triggers PyTorch to occupy devices so other components won’t take these devices as first choices.**kwargs – Hyperparameters used by sub-classes.
- Returns
Any results sub-classes would like to return. Usually the best metrics on training set.
- fit_dataloader(trn: torch.utils.data.dataloader.DataLoader, criterion, optimizer, metric, logger: logging.Logger, history: hanlp.common.structure.History, gradient_accumulation=1, grad_norm=None, transformer_grad_norm=None, teacher: Optional[hanlp.components.taggers.tagger.Tagger] = None, kd_criterion=None, temperature_scheduler=None, ratio_width=None, eval_trn=True, **kwargs)[source]¶
Fit onto a dataloader.
- Parameters
trn – Training set.
criterion – Loss function.
optimizer – Optimizer.
metric – Metric(s).
logger – Logger for reporting progress.
**kwargs – Other hyper-parameters passed from sub-class.