rnn_ner
rnn_ner¶
Tagging based Named Entity Recognition.
- class hanlp.components.ner.rnn_ner.RNNNamedEntityRecognizer(**kwargs)[source]¶
An old-school RNN tagger using word2vec or fasttext embeddings.
- Parameters
**kwargs – Predefined config.
- build_metric(**kwargs)[source]¶
Implement this to build metric(s).
- Parameters
**kwargs – The subclass decides the method signature.
- evaluate_dataloader(data, criterion, logger=None, ratio_width=None, **kwargs)[source]¶
Evaluate on a dataloader.
- Parameters
data – Dataloader which can build from any data source.
criterion – Loss function.
metric – Metric(s).
output – Whether to save outputs into some file.
**kwargs – Not used.
- fit(trn_data, dev_data, save_dir, batch_size=50, epochs=100, embed=100, rnn_input=None, rnn_hidden=256, drop=0.5, lr=0.001, patience=10, crf=True, optimizer='adam', token_key='token', tagging_scheme=None, anneal_factor: float = 0.5, delimiter=None, anneal_patience=2, devices=None, token_delimiter=None, logger=None, verbose=True, **kwargs)[source]¶
Fit to data, triggers the training procedure. For training set and dev set, they shall be local or remote files.
- Parameters
trn_data – Training set.
dev_data – Development set.
save_dir – The directory to save trained component.
batch_size – The number of samples in a batch.
epochs – Number of epochs.
devices – Devices this component will live on.
logger – Any
logging.Logger
instance.seed – Random seed to reproduce this training.
finetune –
True
to load fromsave_dir
instead of creating a randomly initialized component.str
to specify a differentsave_dir
to load from.eval_trn – Evaluate training set after each update. This can slow down the training but provides a quick diagnostic for debugging.
_device_placeholder –
True
to create a placeholder tensor which triggers PyTorch to occupy devices so other components won’t take these devices as first choices.**kwargs – Hyperparameters used by sub-classes.
- Returns
Any results sub-classes would like to return. Usually the best metrics on training set.
- predict(tokens: Any, batch_size: Optional[int] = None, **kwargs)[source]¶
Predict on data fed by user. Users shall avoid directly call this method since it is not guarded with
torch.no_grad
and will introduces unnecessary gradient computation. Use__call__
instead.- Parameters
*args – Sentences or tokens.
**kwargs – Used in sub-classes.