span_bio
span_bio¶
Span BIO tagging based SRL.
- class hanlp.components.srl.span_bio.span_bio.SpanBIOSemanticRoleLabeler(**kwargs)[source]¶
A span based Semantic Role Labeling task using BIO scheme for tagging the role of each token. Given a predicate and a token, it uses biaffine (Dozat & Manning 2017) to predict their relations as one of BIO-ROLE.
- Parameters
**kwargs – Predefined config.
- build_criterion(decoder=None, **kwargs)[source]¶
Implement this method to build criterion (loss function).
- Parameters
**kwargs – The subclass decides the method signature.
- build_dataloader(data, batch_size, sampler_builder: Optional[hanlp.common.dataset.SamplerBuilder] = None, gradient_accumulation=1, shuffle=False, device=None, logger: Optional[logging.Logger] = None, transform=None, **kwargs) torch.utils.data.dataloader.DataLoader [source]¶
Build dataloader for training, dev and test sets. It’s suggested to build vocabs in this method if they are not built yet.
- Parameters
data – Data representing samples, which can be a path or a list of samples.
batch_size – Number of samples per batch.
shuffle – Whether to shuffle this dataloader.
device – Device tensors should be loaded onto.
logger – Logger for reporting some message if dataloader takes a long time or if vocabs has to be built.
**kwargs – Arguments from
**self.config
.
- build_metric(**kwargs)[source]¶
Implement this to build metric(s).
- Parameters
**kwargs – The subclass decides the method signature.
- build_model(embed: hanlp.layers.embeddings.embedding.Embedding, encoder, training, **kwargs) torch.nn.modules.module.Module [source]¶
Build model.
- Parameters
training –
True
if called during training.**kwargs –
**self.config
.
- build_optimizer(trn, epochs, lr, adam_epsilon, weight_decay, warmup_steps, transformer_lr=None, gradient_accumulation=1, **kwargs)[source]¶
Implement this method to build an optimizer.
- Parameters
**kwargs – The subclass decides the method signature.
- build_vocabs(dataset, logger, **kwargs)[source]¶
Override this method to build vocabs.
- Parameters
trn – Training set.
logger – Logger for reporting progress.
- evaluate_dataloader(data: torch.utils.data.dataloader.DataLoader, criterion: Callable, metric, logger, ratio_width=None, filename=None, **kwargs)[source]¶
Evaluate on a dataloader.
- Parameters
data – Dataloader which can build from any data source.
criterion – Loss function.
metric – Metric(s).
output – Whether to save outputs into some file.
**kwargs – Not used.
- execute_training_loop(trn: torch.utils.data.dataloader.DataLoader, dev: torch.utils.data.dataloader.DataLoader, epochs, criterion, optimizer, metric, save_dir, logger: logging.Logger, devices, ratio_width=None, patience=0.5, **kwargs)[source]¶
Implement this to run training loop.
- Parameters
trn – Training set.
dev – Development set.
epochs – Number of epochs.
criterion – Loss function.
optimizer – Optimizer(s).
metric – Metric(s)
save_dir – The directory to save this component.
logger – Logger for reporting progress.
devices – Devices this component and dataloader will live on.
ratio_width – The width of dataset size measured in number of characters. Used for logger to align messages.
**kwargs – Other hyper-parameters passed from sub-class.
- fit(trn_data, dev_data, save_dir, embed, encoder=None, lr=0.001, transformer_lr=0.0001, adam_epsilon=1e-08, warmup_steps=0.1, weight_decay=0, crf=False, n_mlp_rel=300, mlp_dropout=0.2, batch_size=32, gradient_accumulation=1, grad_norm=1, loss_reduction='mean', epochs=30, delimiter=None, doc_level_offset=True, eval_trn=False, logger=None, devices: Optional[Union[float, int, List[int]]] = None, transform=None, **kwargs)[source]¶
Fit to data, triggers the training procedure. For training set and dev set, they shall be local or remote files.
- Parameters
trn_data – Training set.
dev_data – Development set.
save_dir – The directory to save trained component.
batch_size – The number of samples in a batch.
epochs – Number of epochs.
devices – Devices this component will live on.
logger – Any
logging.Logger
instance.seed – Random seed to reproduce this training.
finetune –
True
to load fromsave_dir
instead of creating a randomly initialized component.str
to specify a differentsave_dir
to load from.eval_trn – Evaluate training set after each update. This can slow down the training but provides a quick diagnostic for debugging.
_device_placeholder –
True
to create a placeholder tensor which triggers PyTorch to occupy devices so other components won’t take these devices as first choices.**kwargs – Hyperparameters used by sub-classes.
- Returns
Any results sub-classes would like to return. Usually the best metrics on training set.
- fit_dataloader(trn: torch.utils.data.dataloader.DataLoader, criterion, optimizer, metric, logger: logging.Logger, history: hanlp.common.structure.History, gradient_accumulation=1, grad_norm=None, ratio_width=None, eval_trn=False, **kwargs)[source]¶
Fit onto a dataloader.
- Parameters
trn – Training set.
criterion – Loss function.
optimizer – Optimizer.
metric – Metric(s).
logger – Logger for reporting progress.
**kwargs – Other hyper-parameters passed from sub-class.
- predict(data: Union[str, List[str]], batch_size: Optional[int] = None, **kwargs)[source]¶
Predict on data fed by user. Users shall avoid directly call this method since it is not guarded with
torch.no_grad
and will introduces unnecessary gradient computation. Use__call__
instead.- Parameters
*args – Sentences or tokens.
**kwargs – Used in sub-classes.