mtl

mtl

hanlp.pretrained.mtl.CLOSE_TOK_POS_NER_SRL_DEP_SDP_CON_ELECTRA_BASE_ZH = 'https://file.hankcs.com/hanlp/mtl/close_tok_pos_ner_srl_dep_sdp_con_electra_base_20210111_124519.zip'

Electra (Clark et al. 2020) base version of joint tok, pos, ner, srl, dep, sdp and con model trained on close-source Chinese corpus.

hanlp.pretrained.mtl.CLOSE_TOK_POS_NER_SRL_DEP_SDP_CON_ELECTRA_SMALL_ZH = 'https://file.hankcs.com/hanlp/mtl/close_tok_pos_ner_srl_dep_sdp_con_electra_small_20210111_124159.zip'

Electra (Clark et al. 2020) small version of joint tok, pos, ner, srl, dep, sdp and con model trained on close-source Chinese corpus.

hanlp.pretrained.mtl.CLOSE_TOK_POS_NER_SRL_DEP_SDP_CON_ERNIE_GRAM_ZH = 'https://file.hankcs.com/hanlp/mtl/close_tok_pos_ner_srl_dep_sdp_con_ernie_gram_base_aug_20210904_145403.zip'

ERNIE (Xiao et al. 2021) base version of joint tok, pos, ner, srl, dep, sdp and con model trained on close-source Chinese corpus.

hanlp.pretrained.mtl.NPCMJ_UD_KYOTO_TOK_POS_CON_BERT_BASE_CHAR_JA = 'https://file.hankcs.com/hanlp/mtl/npcmj_ud_kyoto_tok_pos_ner_dep_con_srl_bert_base_char_ja_20210914_133742.zip'

BERT (Devlin et al. 2019) base char encoder trained on NPCMJ/UD/Kyoto corpora with decoders including tok, pos, ner, dep, con, srl.

hanlp.pretrained.mtl.OPEN_TOK_POS_NER_SRL_DEP_SDP_CON_ELECTRA_BASE_ZH = 'https://file.hankcs.com/hanlp/mtl/open_tok_pos_ner_srl_dep_sdp_con_electra_base_20201223_201906.zip'

Electra (Clark et al. 2020) base version of joint tok, pos, ner, srl, dep, sdp and con model trained on open-source Chinese corpus.

hanlp.pretrained.mtl.OPEN_TOK_POS_NER_SRL_DEP_SDP_CON_ELECTRA_SMALL_ZH = 'https://file.hankcs.com/hanlp/mtl/open_tok_pos_ner_srl_dep_sdp_con_electra_small_20201223_035557.zip'

Electra (Clark et al. 2020) small version of joint tok, pos, ner, srl, dep, sdp and con model trained on open-source Chinese corpus.

hanlp.pretrained.mtl.UD_ONTONOTES_TOK_POS_LEM_FEA_NER_SRL_DEP_SDP_CON_MMINILMV2L6 = 'https://file.hankcs.com/hanlp/mtl/ud_ontonotes_tok_pos_lem_fea_ner_srl_dep_sdp_con_mMiniLMv2L6_no_space_20220619_085937.zip'

mMiniLMv2 (Wang et al. 2021) L6xH384 based tokenizer small version of joint tok, pos, lem, fea, ner, srl, dep, sdp and con model trained on UD 2.10 and OntoNotes5 corpora. The following 130 languages are supported: Afrikaans, Akkadian, Akuntsu, Albanian, Amharic, AncientGreek (to 1453), Ancient Hebrew, Apurinã, Arabic, Armenian, AssyrianNeo-Aramaic, Bambara, Basque, Beja, Belarusian, Bengali, Bhojpuri, Breton, Bulgarian, Catalan, Cebuano, Central Siberian Yupik, Chinese, Chukot, ChurchSlavic, Coptic, Croatian, Czech, Danish, Dutch, Emerillon, English, Erzya, Estonian, Faroese, Finnish, French, Galician, German, Gothic, Guajajára, Guarani, Hebrew, Hindi, Hittite, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, K'iche', Kangri, Karelian, Karo(Brazil), Kazakh, Khunsari, Komi-Permyak, Komi-Zyrian, Korean, Latin, Latvian, Ligurian, LiteraryChinese, Lithuanian, Livvi, LowGerman, Madi, Makuráp, Maltese, Manx, Marathi, MbyáGuaraní, Modern Greek (1453-), Moksha, Mundurukú, Nayini, Neapolitan, Nigerian Pidgin, NorthernKurdish, Northern Sami, Norwegian, OldFrench (842-ca. 1400), OldRussian, Old Turkish, Persian, Polish, Portuguese, Romanian, Russia Buriat, Russian, Sanskrit, ScottishGaelic, Serbian, SkoltSami, Slovak, Slovenian, Soi, South Levantine Arabic, Spanish, Swedish, SwedishSign Language, SwissGerman, Tagalog, Tamil, Tatar, Telugu, Thai, Tupinambá, Turkish, Uighur, Ukrainian, Umbrian, UpperSorbian, Urdu, Urubú-Kaapor, Vietnamese, Warlpiri, Welsh, Western Armenian, WesternFrisian, Wolof, Xibe, Yakut, Yoruba, YueChinese. Performance: {con UCM: 15.28% LCM: 11.48% UP: 68.84% UR: 66.77% UF: 67.79% LP: 61.16% LR: 59.33% LF: 60.23%}{ner P: 75.70% R: 77.71% F1: 76.69%}{sdp/dm UF: 91.72% LF: 90.83%}{sdp/pas UF: 95.38% LF: 93.77%}{sdp/psd UF: 91.69% LF: 80.07%}{srl [predicate P: 92.02% R: 74.29% F1: 82.21%][e2e P: 77.66% R: 55.10% F1: 64.47%]}{tok P: 94.49% R: 94.08% F1: 94.28%}{ud [lemmas Accuracy:81.69%][upos Accuracy:86.01%][deps UAS: 80.53% LAS: 71.19%][feats Accuracy:77.14%]}.

hanlp.pretrained.mtl.UD_ONTONOTES_TOK_POS_LEM_FEA_NER_SRL_DEP_SDP_CON_XLMR_BASE = 'https://file.hankcs.com/hanlp/mtl/ud_ontonotes_tok_pos_lem_fea_ner_srl_dep_sdp_con_xlm_base_20220608_003435.zip'

XLM-R (Conneau et al. 2020) base version of joint tok, pos, lem, fea, ner, srl, dep, sdp and con model trained on UD 2.10 and OntoNotes5 corpora. The following 130 languages are supported: Afrikaans, Akkadian, Akuntsu, Albanian, Amharic, AncientGreek (to 1453), Ancient Hebrew, Apurinã, Arabic, Armenian, AssyrianNeo-Aramaic, Bambara, Basque, Beja, Belarusian, Bengali, Bhojpuri, Breton, Bulgarian, Catalan, Cebuano, Central Siberian Yupik, Chinese, Chukot, ChurchSlavic, Coptic, Croatian, Czech, Danish, Dutch, Emerillon, English, Erzya, Estonian, Faroese, Finnish, French, Galician, German, Gothic, Guajajára, Guarani, Hebrew, Hindi, Hittite, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, K'iche', Kangri, Karelian, Karo(Brazil), Kazakh, Khunsari, Komi-Permyak, Komi-Zyrian, Korean, Latin, Latvian, Ligurian, LiteraryChinese, Lithuanian, Livvi, LowGerman, Madi, Makuráp, Maltese, Manx, Marathi, MbyáGuaraní, Modern Greek (1453-), Moksha, Mundurukú, Nayini, Neapolitan, Nigerian Pidgin, NorthernKurdish, Northern Sami, Norwegian, OldFrench (842-ca. 1400), OldRussian, Old Turkish, Persian, Polish, Portuguese, Romanian, Russia Buriat, Russian, Sanskrit, ScottishGaelic, Serbian, SkoltSami, Slovak, Slovenian, Soi, South Levantine Arabic, Spanish, Swedish, SwedishSign Language, SwissGerman, Tagalog, Tamil, Tatar, Telugu, Thai, Tupinambá, Turkish, Uighur, Ukrainian, Umbrian, UpperSorbian, Urdu, Urubú-Kaapor, Vietnamese, Warlpiri, Welsh, Western Armenian, WesternFrisian, Wolof, Xibe, Yakut, Yoruba, YueChinese. Performance: {con UCM: 20.31% LCM: 16.82% UP: 77.50% UR: 76.63% UF: 77.06% LP: 71.25% LR: 70.46% LF: 70.85%}{ner P: 79.93% R: 80.76% F1: 80.34%}{sdp/dm UF: 93.71% LF: 93.00%}{sdp/pas UF: 97.63% LF: 96.37%}{sdp/psd UF: 93.08% LF: 80.95%}{srl [predicate P: 90.95% R: 84.25% F1: 87.47%][e2e P: 78.89% R: 67.32% F1: 72.65%]}{tok P: 98.50% R: 98.70% F1: 98.60%}{ud [lemmas Accuracy:85.95%][upos Accuracy:89.95%][deps UAS: 85.78% LAS: 78.51%][feats Accuracy:82.18%]}.