Source code for hanlp.components.pipeline

# -*- coding:utf-8 -*-
# Author: hankcs
# Date: 2019-12-31 00:22
import types
from typing import Callable, Union, Iterable, Any
from hanlp.components.lambda_wrapper import LambdaComponent
from hanlp.common.component import Component
from hanlp_common.document import Document
from hanlp.utils.component_util import load_from_meta
from hanlp_common.io import save_json, load_json
from hanlp_common.reflection import str_to_type, classpath_of
import hanlp


[docs]class Pipe(Component): def __init__(self, component: Component, input_key: str = None, output_key: str = None, **kwargs) -> None: super().__init__() if not hasattr(self, 'config'): self.config = {'classpath': classpath_of(self)} self.output_key = output_key self.input_key = input_key self.component = component self.kwargs = kwargs self.config.update({ 'component': component.config, 'input_key': self.input_key, 'output_key': self.output_key, 'kwargs': self.kwargs }) # noinspection PyShadowingBuiltins
[docs] def predict(self, doc: Document, **kwargs) -> Document: unpack = False if self.input_key: if isinstance(self.input_key, (tuple, list)): if isinstance(self.component, LambdaComponent): # assume functions take multiple arguments input = [doc[key] for key in self.input_key] unpack = True else: input = list(list(zip(*sent)) for sent in zip(*[doc[key] for key in self.input_key])) else: input = doc[self.input_key] else: input = doc if self.kwargs: kwargs.update(self.kwargs) if unpack: kwargs['_hanlp_unpack'] = True output = self.component(input, **kwargs) if isinstance(output, types.GeneratorType): output = list(output) if self.output_key: if not isinstance(doc, Document): doc = Document() if isinstance(self.output_key, tuple): for key, value in zip(self.output_key, output): doc[key] = value else: doc[self.output_key] = output return doc return output
def __repr__(self): name = self.component.function.__name__ if isinstance(self.component, LambdaComponent) \ else self.component.__class__.__name__ return f'{self.input_key}->{name}->{self.output_key}'
[docs] @staticmethod def from_config(meta: dict, **kwargs): cls = str_to_type(meta['classpath']) component = load_from_meta(meta['component']) return cls(component, meta['input_key'], meta['output_key'], **meta['kwargs'])
[docs]class Pipeline(Component, list): def __init__(self, *pipes: Pipe) -> None: super().__init__() if not hasattr(self, 'config'): self.config = {'classpath': classpath_of(self)} if pipes: self.extend(pipes)
[docs] def append(self, component: Callable, input_key: Union[str, Iterable[str]] = None, output_key: Union[str, Iterable[str]] = None, **kwargs): """ Append a pipe to the tail of this pipeline. Args: component: A callable function. input_key: The input key indicating which fields will be inputted to the pipe. ``None``: inherit from previous pipe; ``*``: use all the outputs from previous pipes wrapped in a :class:`~hanlp_common.document.Document`. output_key: The output key indicating where to store the outputs **kwargs: Extra arguments passed to the ``Pipe`` constructor. Returns: Pipeline: A pipeline. """ self.insert(len(self), component, input_key, output_key, **kwargs) return self
[docs] def insert(self, index: int, component: Callable, input_key: Union[str, Iterable[str]] = None, output_key: Union[str, Iterable[str]] = None, **kwargs): """ Args: index: The index of the new pipe. input_key: The input key indicating which fields will be inputted to the pipe. ``None``: inherit from previous pipe; ``*``: use all the outputs from previous pipes wrapped in a :class:`~hanlp_common.document.Document`. output_key: The output key indicating where to store the outputs **kwargs: Extra arguments passed to the ``Pipe`` constructor. Returns: Pipeline: A pipeline. """ if input_key == '*': input_key = None elif not input_key and len(self) and index: input_key = self[index - 1].output_key if not isinstance(component, Component): component = LambdaComponent(component) super().insert(index, Pipe(component, input_key, output_key, **kwargs)) return self
def __call__(self, doc: Union[Document, Any] = None, **kwargs) -> Document: """Run the pipeline as a function. Args: doc: A :class:`~hanlp_common.document.Document` or other data types. **kwargs: If `doc` is set to None then create a :class:`~hanlp_common.document.Document` as the input to the first pipe using all the parameters in ``kwargs``. Returns: A :class:`~hanlp_common.document.Document`. """ if doc is None: doc = Document(**kwargs) for component in self: doc = component(doc) return doc
[docs] def copy(self): return self.__copy__()
def __copy__(self): config = self.meta return Pipeline.from_config(config) @property def meta(self): return { 'classpath': classpath_of(self), 'hanlp_version': hanlp.version.__version__, 'pipes': [pipe.config for pipe in self] } @meta.setter def meta(self, value): pass def save(self, filepath): save_json(self.meta, filepath) def load(self, filepath): meta = load_json(filepath) self.clear() self.extend(Pipeline.from_config(meta))
[docs] @staticmethod def from_config(meta: Union[dict, str], **kwargs): if isinstance(meta, str): meta = load_json(meta) return Pipeline(*[load_from_meta(pipe) for pipe in meta['pipes']])