Source code for hanlp.components.ner.biaffine_ner.biaffine_ner_model

from typing import Dict

import torch
import torch.nn.functional as F
from torch import nn

import hanlp.utils.torch_util
from hanlp.layers.time_distributed import TimeDistributed
from ...parsers.biaffine.biaffine import Biaffine

try:
    from torch import sparse_coo_tensor as _sparse_tensor
except ImportError:
    # noinspection PyUnresolvedReferences
    from torch.sparse import LongTensor as _sparse_tensor


def initializer_1d(input_tensor, initializer):
    assert len(input_tensor.size()) == 1
    input_tensor = input_tensor.view(-1, 1)
    input_tensor = initializer(input_tensor)
    return input_tensor.view(-1)


class BiaffineNamedEntityRecognitionModel(nn.Module):

    def __init__(self, config, embed: torch.nn.Module, context_layer: torch.nn.Module, label_space_size):
        super(BiaffineNamedEntityRecognitionModel, self).__init__()
        self.config = config
        self.lexical_dropout = float(self.config.lexical_dropout)
        self.label_space_size = label_space_size

        # Initialize layers and parameters
        self.word_embedding_dim = embed.get_output_dim()  # get the embedding dim
        self.embed = embed
        # Initialize context layer
        self.context_layer = context_layer
        context_layer_output_dim = context_layer.get_output_dim()

        self.decoder = BiaffineNamedEntityRecognitionDecoder(context_layer_output_dim, config.ffnn_size,
                                                             label_space_size, config.loss_reduction)

    def forward(self,
                batch: Dict[str, torch.Tensor]
                ):
        keys = 'token_length', 'begin_offset', 'end_offset', 'label_id'
        sent_lengths, gold_starts, gold_ends, gold_labels = [batch.get(k, None) for k in keys]
        masks = hanlp.utils.torch_util.lengths_to_mask(sent_lengths)
        num_sentences, max_sent_length = masks.size()
        raw_embeddings = self.embed(batch, mask=masks)

        raw_embeddings = F.dropout(raw_embeddings, self.lexical_dropout, self.training)

        contextualized_embeddings = self.context_layer(raw_embeddings, masks)
        return self.decoder.decode(contextualized_embeddings, gold_starts, gold_ends, gold_labels, masks,
                                   max_sent_length,
                                   num_sentences, sent_lengths)


[docs]class BiaffineNamedEntityRecognitionDecoder(nn.Module): def __init__(self, hidden_size, ffnn_size, label_space_size, loss_reduction='sum') -> None: """An implementation of the biaffine decoder in "Named Entity Recognition as Dependency Parsing" (:cite:`yu-etal-2020-named`). Args: hidden_size: Size of hidden states. ffnn_size: Feedforward size for MLPs extracting the head/tail representations. label_space_size: Size of tag set. loss_reduction: The loss reduction used in aggregating losses. """ super().__init__() self.loss_reduction = loss_reduction # MLPs def new_mlp(): return TimeDistributed(nn.Linear(hidden_size, ffnn_size)) self.start_mlp = new_mlp() self.end_mlp = new_mlp() self.biaffine = Biaffine(ffnn_size, label_space_size)
[docs] def forward(self, contextualized_embeddings: torch.FloatTensor, batch: Dict[str, torch.Tensor], mask=None): keys = 'token_length', 'begin_offset', 'end_offset', 'label_id' sent_lengths, gold_starts, gold_ends, gold_labels = [batch.get(k, None) for k in keys] if mask is None: mask = hanlp.utils.torch_util.lengths_to_mask(sent_lengths) num_sentences, max_sent_length = mask.size() return self.decode(contextualized_embeddings, gold_starts, gold_ends, gold_labels, mask, max_sent_length, num_sentences, sent_lengths)
def get_dense_span_labels(self, span_starts, span_ends, span_labels, max_sentence_length): num_sentences, max_spans_num = span_starts.size() sentence_indices = torch.arange(0, num_sentences, device=span_starts.device).unsqueeze(1).expand(-1, max_spans_num) sparse_indices = torch.cat([sentence_indices.unsqueeze(2), span_starts.unsqueeze(2), span_ends.unsqueeze(2)], dim=2) rank = 3 dense_labels = _sparse_tensor(sparse_indices.view(num_sentences * max_spans_num, rank).t(), span_labels.view(-1), torch.Size([num_sentences] + [max_sentence_length] * (rank - 1))).to_dense() return dense_labels def decode(self, contextualized_embeddings, gold_starts, gold_ends, gold_labels, masks, max_sent_length, num_sentences, sent_lengths): # Apply MLPs to starts and ends, [num_sentences, max_sentences_length,emb] candidate_starts_emb = self.start_mlp(contextualized_embeddings) candidate_ends_emb = self.end_mlp(contextualized_embeddings) candidate_ner_scores = self.biaffine(candidate_starts_emb, candidate_ends_emb).permute([0, 2, 3, 1]) """generate candidate spans with argument pruning""" # Generate masks candidate_scores_mask = masks.unsqueeze(1) & masks.unsqueeze(2) device = sent_lengths.device sentence_ends_leq_starts = ( ~hanlp.utils.torch_util.lengths_to_mask(torch.arange(max_sent_length, device=device), max_sent_length)) \ .unsqueeze_(0).expand(num_sentences, -1, -1) candidate_scores_mask &= sentence_ends_leq_starts candidate_ner_scores = candidate_ner_scores[candidate_scores_mask] predict_dict = { "candidate_ner_scores": candidate_ner_scores, } if gold_starts is not None: gold_ner_labels = self.get_dense_span_labels(gold_starts, gold_ends, gold_labels, max_sent_length) loss = torch.nn.functional.cross_entropy(candidate_ner_scores, gold_ner_labels[candidate_scores_mask], reduction=self.loss_reduction) predict_dict['loss'] = loss return predict_dict