# -*- coding:utf-8 -*-
# Author: hankcs
# Date: 2020-05-03 14:44
import logging
import os
from abc import ABC, abstractmethod
from typing import Tuple, Union, List
from hanlp_common.constant import EOS, PAD
from hanlp_common.structure import SerializableDict
from hanlp_common.configurable import Configurable
from hanlp.common.vocab import Vocab
from hanlp.utils.io_util import get_resource
from hanlp_common.io import load_json
from hanlp_common.reflection import classpath_of, str_to_type
from hanlp.utils.string_util import ispunct
class ToIndex(ABC):
def __init__(self, vocab: Vocab = None) -> None:
super().__init__()
if vocab is None:
vocab = Vocab()
self.vocab = vocab
@abstractmethod
def __call__(self, sample):
pass
def save_vocab(self, save_dir, filename='vocab.json'):
vocab = SerializableDict()
vocab.update(self.vocab.to_dict())
vocab.save_json(os.path.join(save_dir, filename))
def load_vocab(self, save_dir, filename='vocab.json'):
save_dir = get_resource(save_dir)
vocab = SerializableDict()
vocab.load_json(os.path.join(save_dir, filename))
self.vocab.copy_from(vocab)
class FieldToIndex(ToIndex):
def __init__(self, src, vocab: Vocab, dst=None) -> None:
super().__init__(vocab)
self.src = src
if not dst:
dst = f'{src}_id'
self.dst = dst
def __call__(self, sample: dict):
sample[self.dst] = self.vocab(sample[self.src])
return sample
def save_vocab(self, save_dir, filename=None):
if not filename:
filename = f'{self.dst}_vocab.json'
super().save_vocab(save_dir, filename)
def load_vocab(self, save_dir, filename=None):
if not filename:
filename = f'{self.dst}_vocab.json'
super().load_vocab(save_dir, filename)
class VocabList(list):
def __init__(self, *fields) -> None:
super().__init__()
for each in fields:
self.append(FieldToIndex(each))
def append(self, item: Union[str, Tuple[str, Vocab], Tuple[str, str, Vocab], FieldToIndex]) -> None:
if isinstance(item, str):
item = FieldToIndex(item)
elif isinstance(item, (list, tuple)):
if len(item) == 2:
item = FieldToIndex(src=item[0], vocab=item[1])
elif len(item) == 3:
item = FieldToIndex(src=item[0], dst=item[1], vocab=item[2])
else:
raise ValueError(f'Unsupported argument length: {item}')
elif isinstance(item, FieldToIndex):
pass
else:
raise ValueError(f'Unsupported argument type: {item}')
super(self).append(item)
def save_vocab(self, save_dir):
for each in self:
each.save_vocab(save_dir, None)
def load_vocab(self, save_dir):
for each in self:
each.load_vocab(save_dir, None)
[docs]class VocabDict(SerializableDict):
def __init__(self, *args, **kwargs) -> None:
"""A dict holding :class:`hanlp.common.vocab.Vocab` instances. When used as a transform, it transforms the field
corresponding to each :class:`hanlp.common.vocab.Vocab` into indices.
Args:
*args: A list of vocab names.
**kwargs: Names and corresponding :class:`hanlp.common.vocab.Vocab` instances.
"""
vocabs = dict(kwargs)
for each in args:
vocabs[each] = Vocab()
super().__init__(vocabs)
[docs] def save_vocabs(self, save_dir, filename='vocabs.json'):
"""Save vocabularies to a directory.
Args:
save_dir: The directory to save vocabularies.
filename: The name for vocabularies.
"""
vocabs = SerializableDict()
for key, value in self.items():
if isinstance(value, Vocab):
vocabs[key] = value.to_dict()
vocabs.save_json(os.path.join(save_dir, filename))
[docs] def load_vocabs(self, save_dir, filename='vocabs.json', vocab_cls=Vocab):
"""Load vocabularies from a directory.
Args:
save_dir: The directory to load vocabularies.
filename: The name for vocabularies.
"""
save_dir = get_resource(save_dir)
vocabs = SerializableDict()
vocabs.load_json(os.path.join(save_dir, filename))
self._load_vocabs(self, vocabs, vocab_cls)
@staticmethod
def _load_vocabs(vd, vocabs: dict, vocab_cls=Vocab):
"""
Args:
vd:
vocabs:
vocab_cls: Default class for the new vocab
"""
for key, value in vocabs.items():
if 'idx_to_token' in value:
cls = value.get('type', None)
if cls:
cls = str_to_type(cls)
else:
cls = vocab_cls
vocab = cls()
vocab.copy_from(value)
vd[key] = vocab
else: # nested Vocab
# noinspection PyTypeChecker
vd[key] = nested = VocabDict()
VocabDict._load_vocabs(nested, value, vocab_cls)
[docs] def lock(self):
"""
Lock each vocab.
"""
for key, value in self.items():
if isinstance(value, Vocab):
value.lock()
[docs] def unlock(self):
"""
Unlock each vocab.
"""
for key, value in self.items():
if isinstance(value, Vocab):
value.unlock()
@property
def mutable(self):
status = [v.mutable for v in self.values() if isinstance(v, Vocab)]
return len(status) == 0 or any(status)
def __call__(self, sample: dict):
for key, value in self.items():
if isinstance(value, Vocab):
field = sample.get(key, None)
if field is not None:
sample[f'{key}_id'] = value(field)
return sample
def __getattr__(self, key):
if key.startswith('__'):
return dict.__getattr__(key)
return self.__getitem__(key)
def __setattr__(self, key, value):
return self.__setitem__(key, value)
def __getitem__(self, k: str) -> Vocab:
return super().__getitem__(k)
def __setitem__(self, k: str, v: Vocab) -> None:
super().__setitem__(k, v)
[docs] def summary(self, logger: logging.Logger = None):
"""Log a summary of vocabs using a given logger.
Args:
logger: The logger to use.
"""
for key, value in self.items():
if isinstance(value, Vocab):
report = value.summary(verbose=False)
if logger:
logger.info(f'{key}{report}')
else:
print(f'{key}{report}')
[docs] def put(self, **kwargs):
"""Put names and corresponding :class:`hanlp.common.vocab.Vocab` instances into self.
Args:
**kwargs: Names and corresponding :class:`hanlp.common.vocab.Vocab` instances.
"""
for k, v in kwargs.items():
self[k] = v
class NamedTransform(ABC):
def __init__(self, src: str, dst: str = None) -> None:
if dst is None:
dst = src
self.dst = dst
self.src = src
@abstractmethod
def __call__(self, sample: dict) -> dict:
return sample
class ConfigurableTransform(Configurable, ABC):
@property
def config(self):
return dict([('classpath', classpath_of(self))] +
[(k, v) for k, v in self.__dict__.items() if not k.startswith('_')])
@classmethod
def from_config(cls, config: dict):
"""
Args:
config:
kwargs:
config: dict:
Returns:
"""
cls = config.get('classpath', None)
assert cls, f'{config} doesn\'t contain classpath field'
cls = str_to_type(cls)
config = dict(config)
config.pop('classpath')
return cls(**config)
class ConfigurableNamedTransform(NamedTransform, ConfigurableTransform, ABC):
pass
class EmbeddingNamedTransform(ConfigurableNamedTransform, ABC):
def __init__(self, output_dim: int, src: str, dst: str) -> None:
super().__init__(src, dst)
self.output_dim = output_dim
class RenameField(NamedTransform):
def __call__(self, sample: dict):
sample[self.dst] = sample.pop(self.src)
return sample
class CopyField(object):
def __init__(self, src, dst) -> None:
self.dst = dst
self.src = src
def __call__(self, sample: dict) -> dict:
sample[self.dst] = sample[self.src]
return sample
class FilterField(object):
def __init__(self, *keys) -> None:
self.keys = keys
def __call__(self, sample: dict):
sample = dict((k, sample[k]) for k in self.keys)
return sample
class TransformList(list, Configurable):
"""Composes several transforms together.
Args:
transforms(list of ``Transform`` objects): list of transforms to compose.
Example:
Returns:
>>> transforms.TransformList(
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> )
"""
def __init__(self, *transforms) -> None:
super().__init__()
self.extend(transforms)
def __call__(self, sample):
for t in self:
sample = t(sample)
return sample
def index_by_type(self, t):
for i, trans in enumerate(self):
if isinstance(trans, t):
return i
@property
def config(self):
return {
'classpath': classpath_of(self),
'transforms': [t.config if hasattr(t, 'config') else {'classpath': classpath_of(t)} for t in self]
}
@staticmethod
def from_config(config: dict, **kwargs):
transforms = config.get('transforms', [])
transforms = [Configurable.from_config(i) for i in transforms]
return TransformList(*transforms)
class LowerCase(object):
def __init__(self, src, dst=None) -> None:
if dst is None:
dst = src
self.src = src
self.dst = dst
def __call__(self, sample: dict) -> dict:
src = sample[self.src]
if isinstance(src, str):
sample[self.dst] = src.lower()
elif isinstance(src, list):
sample[self.dst] = [x.lower() for x in src]
return sample
class LowerCase3D(LowerCase):
def __call__(self, sample: dict) -> dict:
src = sample[self.src]
sample[self.dst] = [[y.lower() for y in x] for x in src]
return sample
class ToChar(object):
def __init__(self, src, dst='char', max_word_length=None, min_word_length=None, pad=PAD) -> None:
if dst is None:
dst = src
self.src = src
self.dst = dst
self.max_word_length = max_word_length
self.min_word_length = min_word_length
self.pad = pad
def __call__(self, sample: dict) -> dict:
src = sample[self.src]
if isinstance(src, str):
sample[self.dst] = self.to_chars(src)
elif isinstance(src, list):
sample[self.dst] = [self.to_chars(x) for x in src]
return sample
def to_chars(self, word: str):
chars = list(word)
if self.min_word_length and len(chars) < self.min_word_length:
chars = chars + [self.pad] * (self.min_word_length - len(chars))
if self.max_word_length:
chars = chars[:self.max_word_length]
return chars
class AppendEOS(NamedTransform):
def __init__(self, src: str, dst: str = None, eos=EOS) -> None:
super().__init__(src, dst)
self.eos = eos
def __call__(self, sample: dict) -> dict:
sample[self.dst] = sample[self.src] + [self.eos]
return sample
class WhitespaceTokenizer(NamedTransform):
def __call__(self, sample: dict) -> dict:
src = sample[self.src]
if isinstance(src, str):
sample[self.dst] = self.tokenize(src)
elif isinstance(src, list):
sample[self.dst] = [self.tokenize(x) for x in src]
return sample
@staticmethod
def tokenize(text: str):
return text.split()
class NormalizeDigit(object):
def __init__(self, src, dst=None) -> None:
if dst is None:
dst = src
self.src = src
self.dst = dst
@staticmethod
def transform(word: str):
new_word = ""
for char in word:
if char.isdigit():
new_word += '0'
else:
new_word += char
return new_word
def __call__(self, sample: dict) -> dict:
src = sample[self.src]
if isinstance(src, str):
sample[self.dst] = self.transform(src)
elif isinstance(src, list):
sample[self.dst] = [self.transform(x) for x in src]
return sample
class Bigram(NamedTransform):
def __init__(self, src: str, dst: str = None) -> None:
if not dst:
dst = f'{src}_bigram'
super().__init__(src, dst)
def __call__(self, sample: dict) -> dict:
src: List = sample[self.src]
dst = src + [EOS]
dst = [dst[i] + dst[i + 1] for i in range(len(src))]
sample[self.dst] = dst
return sample
class FieldLength(NamedTransform):
def __init__(self, src: str, dst: str = None, delta=0) -> None:
self.delta = delta
if not dst:
dst = f'{src}_length'
super().__init__(src, dst)
def __call__(self, sample: dict) -> dict:
sample[self.dst] = len(sample[self.src]) + self.delta
return sample
class BMESOtoIOBES(object):
def __init__(self, field='tag') -> None:
self.field = field
def __call__(self, sample: dict) -> dict:
sample[self.field] = [self.convert(y) for y in sample[self.field]]
return sample
@staticmethod
def convert(y: str):
if y.startswith('M-'):
return 'I-'
return y
class NormalizeToken(ConfigurableNamedTransform):
def __init__(self, mapper: Union[str, dict], src: str, dst: str = None) -> None:
super().__init__(src, dst)
self.mapper = mapper
if isinstance(mapper, str):
mapper = get_resource(mapper)
if isinstance(mapper, str):
self._table = load_json(mapper)
elif isinstance(mapper, dict):
self._table = mapper
else:
raise ValueError(f'Unrecognized mapper type {mapper}')
def __call__(self, sample: dict) -> dict:
src = sample[self.src]
if self.src == self.dst:
sample[f'{self.src}_'] = src
if isinstance(src, str):
src = self.convert(src)
else:
src = [self.convert(x) for x in src]
sample[self.dst] = src
return sample
def convert(self, token) -> str:
return self._table.get(token, token)
class PunctuationMask(ConfigurableNamedTransform):
def __init__(self, src: str, dst: str = None) -> None:
"""Mask out all punctuations (set mask of punctuations to False)
Args:
src:
dst:
Returns:
"""
if not dst:
dst = f'{src}_punct_mask'
super().__init__(src, dst)
def __call__(self, sample: dict) -> dict:
src = sample[self.src]
if isinstance(src, str):
dst = not ispunct(src)
else:
dst = [not ispunct(x) for x in src]
sample[self.dst] = dst
return sample
class NormalizeCharacter(NormalizeToken):
def convert(self, token) -> str:
return ''.join([NormalizeToken.convert(self, c) for c in token])